-- 作者:小鞋子
-- 发布时间:3/28/2004 12:39:00 PM
-- [揭露本人头像秘密].asp中以二进制将图片存入XML文件中(显示,和存入)
参考过一些外国的文献..具体在哪也记不起来了.. 文件一:将图形文件存入XML文件中.. 文件名: imagetoxml.asp <% Option Explicit dim xml Dim objStream Dim objXMLDoc ''定义变量完结 '创建对像 Set objXMLDoc = Server.CreateObject("Msxml2.DOMDocument.4.0") '设定生成XML文档的根为 Base64Data objXMLDoc.loadXML "<?xml version='1.0'?><Base64Data />" '用 stream 来读取数据 Set objStream = Server.CreateObject("ADODB.Stream") objStream.Type = 1 objStream.Open objStream.LoadFromFile Server.MapPath("2.jpg") '2.jpg要和这个文件放在同一目录下. objXMLDoc.documentElement.dataType = "bin.base64" objXMLDoc.documentElement.nodeTypedValue = objStream.Read '数据流读取结束.得到了值 objXMLDoc '创建XML文件 Set xml = Server.CreateObject("Msxml2.DOMDocument.4.0") xml.load objXMLDoc xml.save (Server.MapPath("2.xml")) '同样文件名也可以自定义 response.Write("成功") %> ================================ 文件二:把XML文件以图像的方式来显示 文件名:xmltoimage.asp <% Option Explicit Dim objXMLDoc '定义变量完结 Set objXMLDoc = Server.CreateObject("Msxml2.DOMDocument.4.0") objXMLDoc.async = False objXMLDoc.validateOnParse = True '创建对象 If objXMLDoc.load (Server.MapPath("2.xml")) Then '如果成功加载2.xml(这个名可以自己改保证在SERVER.MAPPATH的相对路径下) Dim SigNode Set SigNode = objXMLDoc.selectSingleNode("//Base64Data") '读取图片对象 If SigNode Is Nothing Then '如果图片没有找到 Else Response.ContentType = "image/jpg" Response.BinaryWrite SigNode.nodeTypedValue 'Response.BinaryWrite 以二进制方式写出 End If Else '发生了错误.代码自己写. End If %> 末了.大家可以用ASP的随机数来读取不同的XML文档就OK了. 同时传上兔子的个人头像..感谢她上回给我的三个大学生XML论文 文件名:2.xml <?xml version="1.0"?> <Base64Data xmlns:dt="urn:schemas-microsoft-com:datatypes" dt:dt="bin.base64">/9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja3kAAQAEAAAAZAAA/+4ADkFkb2JlAGTAAAAA Af/bAIQAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQICAgIC AgICAgICAwMDAwMDAwMDAwEBAQEBAQECAQECAgIBAgIDAwMDAwMDAwMDAwMDAwMDAwMDAwMD AwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMD/8AAEQgAcgCVAwERAAIRAQMRAf/EAKQAAQAD AQEAAgMAAAAAAAAAAAAHCAkGCgULAgMEAQEAAAYDAQAAAAAAAAAAAAAAAgMEBQYHAQgJChAA AAYCAgAEBAMFBQkBAAAAAgMEBQYHAQgACRIUFRYRExcKeLg5ITh5ubqRNhk6ejEiMiM0GClJ yYoRAAEEAQMDAgQFAwUAAAAAAAABAgMEBRESBiETBzEUQVEiCGGBIxUJcTJC8MFiMxb/2gAM AwEAAhEDEQA/APfxwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwD8RCCAIhj EEAAByIQhZwEIQhx8RCELPwwEIcY+Oc5/wBnAIob7cbl6lmGKJTVBHZC7FtDLNF7ezlRleYt MUEsa7AiX498StkmUFFFt556EoJ41afGfD80PAJZ4BxkosGHwxQiSyV5A2HL06pYX8UbirJT IEIyC1bm6qUKRUmZWpOYpAESpYMhPgQvh4/j8ccA6xKqTLUydYjUEK0asgpUkVpTSz0ypMeW E0hQnPKEMo4g4oeBAGHOQiDnGcZ+HAP38AcAcAcAcAcAcAcAcAcAcAcAcAcA/mWpS1yNWiNy LBSxMelNyDOMCwWoKGSPIc5xnGBYCPPw4BnXZmJlAzGUa09cqZGeLs1ezmOebN8oqa0ABNjT LWgnHwLTJJGkTBUo1ZXxObHYoRIx4NLx4prdFTRfQ7E+K6nE+c8WtePstFFFyFrnz1pkaiSO 1ROqP9VWNyfWxeixrqifSqpc2ppyVN4sQccuKXPDVgpE5qiwFp/VSxF+NskhKMGA+WSyJFjB /wAsOMgTqcHpfEIacfJbkVq6KaHy+Kv4LJz4jJsWO9XkVj2r80+KfNFTqip0VFK27UvMghst hz9H3RxbMv7ThM4GIjzicjMhEhRrmooQiPD4Exxc0W/P+bkQDBAJCHAc4Fgccaojl1+RtrwZ jcRl+S28ZloIZ2y4+VGpI1HaL0RVai/5aO6KnVE16lhqLPEorJlMz8AgA7TNOmKBn/kpUSSb yNKgQpg4+ASkaBESWSQWHGAFklhCHGA4xjks05cibBcmgb/ayV7U/o1yp/sS5wU44A4A4A4A 4A4A4A4A4A4A4A4A4A4BwFjQ1hmEeVFvahM2Ybk6pUU+Ki0o07amwXgxwA5BViLTqWFWQRjC 0gwZYRlgwMIyjiijiuUVWrqnqVmPyF7E3YsljZXw3oXI5j2ro5qp/rRU9FToVepRldGxQ/uV crSZGji6hc0GoDjlKRvcjBAQvR0da39ehSI5LFnMlxC4R59SfOTpVRqpMf8AARqzAY3ORzU+ aGdc45dj+dQQZy1Elbl0SJFOjEXtWY0RdkyL6skYqbXsd0VqtVq9NCQZ3CJZdKrKN3iK+At7 bDpEhbnJ7dYy7GqJC9PURWJAgRRt4eRYRJEkcN+aMYyReI0Hg8f+98IWKjXaqWXg3Jv/AB/K avIVjWWKBzkexF0VzHtVrkRfTXRdU16ap1JCplIBhjrzBxmiMWweXyZrUZMyH5xyR5dD5cxr h4xn9uFzHIk485xjw4NwMGM5yDOeQr6mOXLC27k1tURqyyvfonw3uV2n5a6Eu8FMOAOAOAOA OAOAOAOAOAOAOAOAOAOARbNgheZhXcPWYxllXmyKVOycz4iTPGYgnbC2pjVFeIADSBO0gJcv DnIsCy14CIAgCFkIHYJHZ3G8OyFfHxtrO3FhNRyMbs2HoXUsZZA/AUiLNC5ojkucmhUeYKLK B4AZKGdgYslh1Pj005YnmLqJdDVBU8aiBqwF5iCxvdRrxNjia2uxTaYFWWlWqkByU/HygmeI 0ZOQA8Q8hxkDjrJDlnYirYb0SlpkcSRoXZ1SjUFplTtEyTi1MkiT4FCesbXM8lsOUiQ+MR5S RywEwkwIRmCGBMfAPJWxbv8AYBYVBqNpBb6M9XlO9I3VsiRTieitHlkMhcdrmzbQqyGQBxdr BvFj2dc0Vm2DA2yNNr2hgryly+SdCiCqPVBUYK6pQc157kMCvJ/31lVH0rFxK6VsascbIZpo I4ldLZbdck0sTIWSNrSN7kzGI5zkdp9AOV+2H7SuIeWGeC08U2M5JX5PhuOuy7s5zVly5YyO NxmUuX44qGEn41E/G0L1nI2KU+bpy+yxlqy6CKB0SyTS+Wz2BMstlsRR9ppTwKC2pN6qnTmZ rf1smDj44LSOzd3rZIQki+zsjLgxq0vV1a0ZS2eOvQJAPAlKkZA21eWlvM+V59DblqM5Qj+x akgld7TEfR2q1yyr0Rl1/a19k6Pbd9qjUk3OVqxyI3WuL4B9pGS4/j+Q2fBLqyZTA0spRiTk XkZEsJezXGsKyu59rjVdbyMXk0Nvu8ZTPuldUSGBsrbtV8/Ah2U7DCGl8kkh7L48y1+haake oLLWiousJS7ThHbMh2ViikmVSGY7Sw/WppdohKNXHskhBE7Ala9a3LU56glMqTuiRtoP/R+Q GxPs2OSRsoNZA6KRsGGV0iTvuMXe+S7HTa6N9KREbBanc5jmucjXNlZHli+FvtBlv1cLh/Cd yzy6Wxlob1SXLeS2xUn4qvxy01atenxi3yOWK3W5NSe+fK4HFQQ2IZooZJoJqNi7CEw7GezG v/qVHZJttWCw2sJFa0StidR6laxX/TPYCm5Fb0JhWskXijgzsknsBFtS6x+LuLNIMseFRTcv e1SQvysMluW+yW/Ifkmh7mvYy1ZVrSTxzysrwr2bVd88cdNjFa18qXXMhfHL29yMdM5ibadv t7P479nH2Tct/ZcxhvH+cjjzlPF28VRsZnJR/uWBzFfE3bvJbVqOaatQfxeKxk69ygl3tOsQ YyCw/v8AJOPpc9YVDymZzmjqZm1jsPtaw5jVNdymeRjyx6L25M5BEGd2lDD5NUIapJ6Q+Kz0 /wAozOTC/l+EWc5xnnanBWrl7CU7uRj7WQmqxPlZoqbJHxtc9ui9U2uVU0Xqmh4FeVcFxvi3 lDknGeG2/f8AEMdn8hVo2dzX+4p17c0VWfe3Rr+9Axkm5qI127VOikrcupgQ4A4A4A4A4A4B FdjXZV1SDQl2JLUsZE4oVrml8whd1gRNzcsbG5atOG2N64CVMQvekhORm5BjJigAcfHOfhxo qlzxOFy+euJj8HVsXL7kVUjhjfLIqIiqqoxiOcuiIqr09EVSNw7la0DRnuBdptpiBKSQpVLS 2OVjSJk6k/KZMepUBYclEFKFIclgEPOMDHjw4+Of2c52r8jIHeOfIDbDaj8Hl0tPcrWsWpOj nOa3c5GtWPVytb9SoiLonVehCtr7va3CQsrhD5s7zqbxh4Lf49G4LC5U9uTt40LizPDSNWez oWJqy6MDmrKKOWrUxZKjJRuciwDwiia1yrrp6GTYXwl5VylhEZgrsMLXJufaZ7SJE/5SWe23 T+mvyOqp6zq2nUeKnoXuaSOFy5I6pC0D5WE6UIlJZC9W0OyN6LKYXZkyJucUR6ZQD5xhWDCR ftyX4RiKvTT4lLz2/JSll4pfxzaWZpzLHMnRdr2atcjXImjmqvo5NWuaqKiqikyBlNNGMb42 wKb1pFlIkeFqw1lc42z/AC0jQixjKtaWnMSi8k3tiTw5OFjICCC/h8QhD+yFqoi9TA8Ncq0M jHauxJNWavVq/H8fyOThZjhY7USyIJGhl8Ly+x9/cZq2KRuUeXIWN0SviZijL0XjLfJjHhe3 lFqzkhpyRIlwaAZnmBAKxy5U0/EvXK8jgslYjnw0Kw6N0cmiJqvTRdE+Xp81/LraTkJiRiwd 0Watpl70fE7t3Jrxoe49Jq/MicFvJvZ4whpuZSBylkpodCiUQVwV/Rp/k70scVjKeeeBUtVH HGmDMMELOml8H8YbI91W7mK8T43xbIrKNYleR6yPqoixKvt3Pc57o1VdznK5VVVU9LI/5S/O k1StFn+MeOMxkKtytfS1ewkk1l+Yp146tXOPe29Gz94grQw14bjGMWKGKOONjWMaifIpekfX tldSJTDdj95K/npzgpksosmE7BJWWez+xFSud5OtebyDMFUmO1lCYbOkDL6kWBP8Wh5Wk5Ly NUoNMmN8LcfhlS1TyObr31cr3zR2kbLLKqy/ryP7S7pts0se9NP05Hppq5yrRz/yceXslQfg uR8M8XZfibYW1q2Ou4B01Ghj2so6YqlB75qRY7v42hc9u5ZNLdOtIj0bBExn97b02V+xv8lm Ud3m7Lo3O516N9RZ8xbTJW6Z2T7YRGNcR9+PxNdeakfs5nOGia/nf9GkMEWD9meRx+HqEFiS 5XzfJI70+3vStuokk2xNsfdd2dX9turWa/2tXRCku/yPctymJpcczHi7wpd4riu9+30J+MOk p473L0lt+xgXIba/vJkbNZ2f90rUe7qh85XPSxpbVU/q+dw0q2EKasHOByrFfHz8Kmtp/ZFY hfcQO1bIjImMI3+fRkcncBJFBChGkKwtPAFNgo84syfjvDXDcXfq3qaWmtrOif2ll1hlmh3d qeZm365Wb37VRWtTc5NujlRbXzL+Sz7leecSznFeRuwEs2cgvVfftoK3I0Mdkux77F46yk+k FCylauksb45pXrDE5ZlfFG9mtfNrnn8OAOAOAOAOAZYW/t41sW/sq07kssf0DX/2w6qX+3xt E+wKBJnFJYOy1/a7vLaxTl6eofIVMpntnLK6ZgNGHXxrzBJUTUTlW4qy1IFlXwycMScSz1ub wRgKPAQRmy7hrBnAAKkfwRkpHNRD7Oc1ohC+IRefcPMYF8Ahybj45CBnxtq0WnMBVXOXE1YR C2ueJq3QOU9sZtTt06UWYNEFMNlYSarroZkaSv0abMYdlqwBSgtSMSQg0vwqMTI1+rT5nZD7 X+XVOLeQZ4r6P9rexlhm5jO5Kx8LFna6JqNc5X7WSMa1vVyvRFRfQqGWpEU8Pbw4R1eVCTXw xDIGSKOKxvYgn5yqObmYh1HheT8tOeT81Ng7JohgLznHx/4uTep6ZvhSTHVcfUuRO5M2qj4J rUbJJ9PpbJM6JO2urmrtk2bERzkRfkdPB8O00mtSxav0cif5wElUhWNEJa00ecI+z+pqigyV 8lxRS4lGzEp13wWPK8nGCsZAmKAeeMkkzhVROq+hgHkbk2H4DxvN5Dk3tvaWXtdVjsyPspam 7bdY21vpWNjXs6MY7YnWRzma9Yd2O7WNLuqCC28xJSZ1fNkUxe1BVvsu/UhYSqKODNbmw8U2 bkidoLZFZR0Id1teR7U4aXDY6DEIwpYRhaMo35uFElzlcuqnlz5M5/kfJnL7HKskxkTpEbHF G30jhj1SNmv+Soi6ucvVXKvomiJbbZTsx1Zjb1qVrvehW0svI7BNtdotEq1b2mI67yFhap3r jtym0znEistxfimBe2wmRzl2SOLcY3JXZeW0/NEYnCeACccJgJ0+s2/J9lzqt6gpyMr62hFX d1+5XWnaSJ6FDXkyxo7QOkG2uw5r6xImCERRmrhlX2nEWA9AhaicHp0DVgk1SMCtURwCHOvb fXbG8ejbR7cO0rW90bG3Bt/rTVti2L7GrZk9xQSwO4yFarS5i9ox2HNEFaPV6Fd1DD5pC2JV if5nnSTS3EIVeAFAb67YzbfqA0pJ7W9TrJ72/t2rXONexq2ReZgkXuj7oCJsTF6y3w5JICfI x/rtpxP5otWBYb7P8ZhozHV7G5AOqvfXbHZHQXpKuu6bW952bt3t/tRVuw8l9jVtHfqFBK3p ftClkLYvRopDmKPxP0aQa6w1R5pjSNixR6P4DzTS1a4CkB17b67Y3jFNHnK0rW90Lbg2/wBa atsU72NWzJ7iglgfbSQrsClzF8uOw5oKaPV9undRLfNIQpVif5npZJpbKELdgDIHsJ7mOyaj tBd4brq3Y/2vZtP/AHH2y2hVdSX6P0K9+3dTq/peayyI1T6NIqud4+7+kSBoTqPXVyRVJVHy /Ac4GFiEDIC3e5jsmi9z3/E2LY/yMfhO3/3QFWxhv+j9CqfTIJ126CwG69OmLzSyrlC1b9H7 Ne1Tn5pQYaskHzfLvZrkkCAgIHu84A4A4A4A4Bh9dK3WoHbrZDFNDoC3bHyDr10gOr13sN/a Iq3mVg0di9qNLlEmCYLErgviU4mmwMzrtLHcJScLnWTgawN4wr0pIgAWjT3PRjJYWqdcityo 4vKd3Ec9kOsIqVRgtN3u2OQCrQW5Lp+x3k+tT0wucYLgh6NyC5eUxlb55KJOsPEfgXAM2JZv pV9j9lHYf1e2NG41V1NaiaRLNnbR2ZmTvK5fYGFzIz6w2wimQH5xejy2ev64ZraVHubWIsZ6 o9AWYnOJJGeTnlF0XVC+8Y5DkOJchp8lxSomRpTtljVU1TVvwVPkqKrV/BVJiddV0TdWNo3L Nr0qOCUVVKm4JTaM7rGUutpx2MR2iD5Qz2kzlNaxrbUjPLKzf4W9N7155Y6KWZa3qEJyQxUS dgM1ZU+CdTuBd+8nIR1I24nExy5VlRsfuLW3es2v6kmkG1Fjdo1Uiasf1dVXREaUA3v7GbN0 /wB4+vXRLWFCkhcfs7tPqjVjZq0JAianyx7ejEfg/WLch+QOpCJC3tKSURXdpUxLwASBwnJa /AgCkJGEIZSrquqnT/kXJczyrJPyubmfNZe5yoiq5WMR7lerI2qq7GblVUai6IeOfscz8f8A H0+P7f8Az/U3j+z/ABqMY/sxzgsRv92H/vh/bq/x/u3L+evCeAX/AOtP94qxv9X72xfystyO AOp3/LPdaf4/9N/6hCueANVf1Tas/H/fn5ivvVuAOjr9LL7bj8f+8H5de67gDqd/uN1p/j/0 3/o2654BgD2xfpZdln+r93I/LrY3AF+fvFbVfj/+9W/lZVZwD7PvgDgDgDgDgHkC7LP8whXP 4AOp3+ph034Aqz94r7Kn8AG1X8rKg+AUA2Z/XX+6O/gA7Bfk80a4Bv8ATb9Cjty//RV+cPsP 4BgD25frr9eH8f6E/k8+3V4BgD2N/wDv0/j/AFOf/ajgG/3Yf++H9ur/AB/u3L+evCeAX/60 /wB4qxv9X72xfystyOAOp3/LPdaf4/8ATf8AqEK54A1V/VNqz8f9+fmK+9W4A6Ov0svtuPx/ 7wfl17ruAOp3+43Wn+P/AE3/AKNuueAYA9sX6WXZZ/q/dyPy62NwBfn7xW1X4/8A71b+VlVn APs++AOAOAOAQBem0dE62e1vrPOfaXu31taj8rGZjLfQodEvSPf9u2D7Kj0j+lmv9We42v3j Ysm9IgkO9Xb/AFt3QefR/PA8wPZZ/mEK5/AB1O/1MOm/ALvl6268VXtV0lwd+2qkBs26f6fl OrLsci1btpwpq0rC2M1RqjXCv4paGzTKreNfNS7gkxaFgemCBSaQuEmkhk0jyBEQIb6xqHMC P9y+q+mqf2H7ie1jYPeSP0nTm6nXBY+ns6bpLTB61uoBunFS0LTKSyE0nQ2qF3uOQKXeo0+G mHNzC2OsgdX1O1ITzFnyMKwNP7H1Eisa66t39Y51e8fgUJvSP9l0smN+SxibmKK0xFd2LQ2Q vCQyWStzxN25oVR+iWi7jilq1U9tKZ0TMg1Zo2wB4i0wGUNjdZ1RdmO9lQbm11tbYFYyDU/f +E73SnXi4tJ7spm03JnX07oDUcUjiqL7DvVGWayV/N1vXA7jZ58CKL2JzcV7s2JC1CuLOPzw M4Lo6E9eNr7l7A6JYeySQRqbbwdj5O2jS+LdCraNpplsKkyN7VFgatVfsW9WhFdfNjrghxey r/h/a4zKPc0fMrOQgWsJY2x8CxgaP799Z1RILi6wbQsXa2wGeQac7/7qb3Rao6d0nuzaq07x Z9gN7IbulK44lrnXh6nNmwKv6VWrGiGvE+GwOzEFxkLSYrLblbm3NasCX6h1EiurVwamTqC3 vH9hITvp3vbd9icOmMTYm5tirRFdo+qHfF4j0TjUhZ5vOWiy4+3tEeJVIpQlOQpnlMtAaUjJ BgIjAKgdORlZm/bc9c7dZs8kEITF7Px2x4qgg1S2Ff1mWPKtae1iZ7aZrGtqRqJtfrWsOQSm LUG6ZXZYGx1UxuPJ3KRKkhrazrvCBo/qx17QR7uyud4K22W99xInYC0btTRM+m3iGvBDw8W7 3dvMsqiXJpLNU0truwKwlvbUujMjantiRvrG+1WrQubYhXuihEwgc/15aRU1rXXunXXLDtvI /dtx9PNwPmzN0FM1aHx1xcm7dKs+wqHVdDpYzkT6VtFWyBQ0bCuD4WmE7vbqY1R9GpUN6NHI m1WEBqvpFTWqlwaoagm7eR+d7B0rIIBvihrJNWh7NKpTTWvHVDWHSc6PTyhST6Tpq8j8qmzo jlzY4OB5hi9Thewt6Vww0Ob0mAoB2OdGtZvul+w1K2bu/IIAm2j7nra7Loq4QbTiwtg7MWSq 5apnEezrBW2vlRWU82tdUgiEWw6Sdc+MCUxSTHmFycVTKjbUC5clAzA7StRIrq1cFXzqC3vH 9hITvpH/ALq/sTh0xibE3NsVaIrtH1QxV4j0TjUhZ5vOWiy4+3tEeJVIpQlOQpnlMtAaUjJB gIjAPsHOAOAOAOAYg7z6rbHSHae0r71/iGwDtZtp6gUnRGtFqUptCqperNaNjqWsXbiZsNv7 t1Cv2BqGP7Ca/oZBsfFHFOyghl1mqG6OSdEpi/y1xCGRAc/t31f37f3aVE93YdL6fbapYtYN IqUVx+Sv80R2EZKta+32gt/504Jmprr95jY4+7U5Vbg2NJonYCk+THJ06ghKhGa4kgSBfumV 323twpQwM64KWo6X7P6i7m3VKWada1TbWq8HvU9711kTUTLIFNKoX7oRHZ+SOOsUShxbFEZJ HajQQhkRzE59cJMY9QV7Au/2E1bO7x0F3hpSrWL3RZtwagbLVbXUa9TZ2T3FO7ApeaxOIsXr MicGiPtHq8gd06fzS5WlRp/meM40ssIh4Al/YWtm65aCvCoHiEx+y2i1qfsutnSuZZOZVWEV n7dOYW9RhdCZLZUFY5PNq8j8qTOgkC18Z21wdWlMeNUkTHqCiyhgUg0G172AiVp7B7QbDzzY B6kF41/r9TkMgG0YtQF97QWCa5yPYaUlus5dNFoJBdcm33rM9jXoTYxtR8wWI2duSOK6RiVv BsXigEAU3qfe0a3JhUnd6isBm9h7f7hX9YN4PNtw5802nNE3gh2vBTsO1g1YS2+//RDb9q+v MFLn08Q05XTxIz2SwzF00f8A3W4GzcCz++B2yKWVUqbrpQNwS1Suj9uMlgbLayEaLOOz9IxV Q41K9t9T1aj30sKB1S0R/YOUx5C4SZ5MRzNMmb4AW3ij+HJ1Z5NGAOgI1c+bGOrJvqWDfQ6s tKLAYJkppexZN6/O6/qxB197Q6qxOpyH+NSG24/L7AgMgu5hSuKkUpcW5UjbF6ol5cDMJ/Og Zwaa9eOz+gPXp1X1E/RWP7G2t16bP3zddoQLXWYx8txsuK3bAd/KyZW+mX7YlXrzCXCQRdTu CwOrwVJnWLJgtTO7+SPXLi25E5Aav6L1bO6k1/OZrJYvaktnewG4mwimHHubO8PEHZ9qNv71 2ZicDlzjGnB7iR9gQeJW2haZHhkc3liLfUasDY6OiAKdwUgUg68dH9uNS9rr5frjten7hqmb 6wUazDtCE0O903Kra2HV7Vb47E3NLHxlcdrLsTRWQDm2zL3JpIW3sDPEndTP2xFF0ceQxda3 LwLvzWrZ2779a03W3sXmKyr/AFA3hq2XSX1NnK9IndwXR17SyumL0Y9wLkC/3FH6OlKjzSVI cjSel+BUaSYpSAUAVf7Adb5VY9+6x32kqTZ+8oTUtP7T1DIa80y2pcdS79KlV8zTUyZw6ZnT grabTNokVPsLRrm+oX1qPm56kb07sSghjXgIUL2cCkHYF1Tbw7xxjrweZLbev7vduu+gHYzr 3tBMZE7S2Ms9h7Hbt9fbfrMhnldN0Lpr0z6f/W3zrs75MbI8agYjgjQNZx2MN4APR9wBwBwB wBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwB wBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwB wBwBwBwD/9k=</Base64Data> 写得这么明拍了.别告诉我你不会用啊...   
|